Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Acta Physiologica Sinica ; (6): 216-230, 2023.
Article in Chinese | WPRIM | ID: wpr-980999

ABSTRACT

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Subject(s)
Humans , Bartter Syndrome/metabolism , Pseudohypoaldosteronism/metabolism , Potassium/metabolism , Aldosterone/metabolism , Hypokalemia/metabolism , Gitelman Syndrome/metabolism , Hyperkalemia/metabolism , Clinical Relevance , Epithelial Sodium Channels/metabolism , Kidney Tubules, Distal/metabolism , Sodium/metabolism , Hypertension , Alkalosis/metabolism , Water/metabolism , Kidney/metabolism
2.
Acta Physiologica Sinica ; (6): 188-196, 2023.
Article in Chinese | WPRIM | ID: wpr-980996

ABSTRACT

Renal outer medullary potassium (ROMK) channel is an important K+ excretion channel in the body, and K+ secreted by the ROMK channels is most or all source of urinary potassium. Previous studies focused on the ROMK channels of thick ascending limb (TAL) and collecting duct (CD), while there were few studies on the involvement of ROMK channels of the late distal convoluted tubule (DCT2) in K+ excretion. The purpose of the present study was mainly to record the ROMK channels current in renal DCT2 and observe the effect of high potassium diet on the ROMK channels by using single channel and whole-cell patch-clamp techniques. The results showed that a small conductance channel current with a conductance of 39 pS could be recorded in the apical membrane of renal DCT2, and it could be blocked by Tertiapin-Q (TPNQ), a ROMK channel inhibitor. The high potassium diet significantly increased the probability of ROMK channel current occurrence in the apical membrane of renal DCT2, and enhanced the activity of ROMK channel, compared to normal potassium diet (P < 0.01). Western blot results also demonstrated that the high potassium diet significantly up-regulated the protein expression levels of ROMK channels and epithelial sodium channel (ENaC), and down-regulated the protein expression level of Na+-Cl- cotransporter (NCC). Moreover, the high potassium diet significantly increased urinary potassium excretion. These results suggest that the high potassium diet may activate the ROMK channels in the apical membrane of renal DCT2 and increase the urinary potassium excretion by up-regulating the expression of renal ROMK channels.


Subject(s)
Potassium Channels, Inwardly Rectifying/metabolism , Kidney Tubules, Distal/metabolism , Potassium/metabolism , Epithelial Sodium Channels/metabolism , Diet
3.
Allergy, Asthma & Respiratory Disease ; : 3-8, 2020.
Article in Korean | WPRIM | ID: wpr-785354

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction, which causes most CF morbidity and mortality. This article reviews the pathophysiology of CF, recent animal models, and current treatment of CF.


Subject(s)
Airway Obstruction , Chloride Channels , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Epithelial Sodium Channels , Half-Life , Inflammation , Intestines , Lung Diseases , Lung , Membranes , Models, Animal , Mortality , Pancreas
4.
Chinese Medical Journal ; (24): 1342-1348, 2018.
Article in English | WPRIM | ID: wpr-688121

ABSTRACT

<p><b>Background</b>Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4.</p><p><b>Methods</b>A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing of A549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis of A549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression.</p><p><b>Results</b>The A549 cell models of ALI were constructed and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream-regulated gene-1 (NDRG1) was validated by real-time-PCR and Western blot. NDRG1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG1 expression induced by LXA4. NDRG1 siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605 ± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P = 0.001) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ± 0.025, P < 0.001) expressions and serum- and glucocorticoid-inducible kinase 1 phosphorylation (treatment vs. control, 0.442 ± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG1 expression induced by LXA4.</p><p><b>Conclusion</b>Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.</p>


Subject(s)
Humans , A549 Cells , Acute Lung Injury , Metabolism , Cell Cycle Proteins , Metabolism , Cell Line , Epithelial Sodium Channels , Metabolism , Intracellular Signaling Peptides and Proteins , Metabolism , Lipopolysaccharides , Pharmacology , Lipoxins , Pharmacology , Signal Transduction
5.
Kidney Research and Clinical Practice ; : 305-317, 2017.
Article in English | WPRIM | ID: wpr-143322

ABSTRACT

Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.


Subject(s)
Absorption , Acid-Base Equilibrium , Adrenal Medulla , Aldosterone , Alkalosis , Angiotensin II , Angiotensins , Blood Pressure , Catecholamines , Epithelial Sodium Channels , Negotiating , Nephrons , Rodentia
6.
Kidney Research and Clinical Practice ; : 305-317, 2017.
Article in English | WPRIM | ID: wpr-143315

ABSTRACT

Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.


Subject(s)
Absorption , Acid-Base Equilibrium , Adrenal Medulla , Aldosterone , Alkalosis , Angiotensin II , Angiotensins , Blood Pressure , Catecholamines , Epithelial Sodium Channels , Negotiating , Nephrons , Rodentia
7.
Journal of Nutrition and Health ; : 217-224, 2017.
Article in Korean | WPRIM | ID: wpr-154952

ABSTRACT

PURPOSE: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. METHODS: This review was written based on the modified 3(rd) step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. RESULTS: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), α-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily β-2 (CYP11β-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), 11β-hydroxysteroid dehydrogenase type-2 (HSD 11β-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L), and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, CYP11β-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. CONCLUSION: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.


Subject(s)
Adult , Child , Humans , Angiotensinogen , Blood Pressure , Cardiovascular Diseases , Chronic Disease , Cytochrome P-450 Enzyme System , Epithelial Sodium Channels , Genetics , Genome-Wide Association Study , GTP-Binding Proteins , Hypertension , Obesity , Oxidoreductases , Peptidyl-Dipeptidase A , Phosphotransferases , Polymorphism, Single Nucleotide , Sodium , Sodium, Dietary
8.
Journal of Southern Medical University ; (12): 494-498, 2016.
Article in Chinese | WPRIM | ID: wpr-273736

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the role of interleukin-17 (IL-17) in alveolar fluid clearance in mice with acute lung injury (ALI) and explore the possible mechanism.</p><p><b>METHODS</b>Sixteen IL-17-knockout mice and 16 wild-type mice were both randomized for intratracheal instillation of PBS (control) on lipopolysaccharide (LPS) to induce ALI. Forty-eight hours after the treatments, the wet-dry ratio (W/D) of the lungs, IL-8 in the bronchoalveolar lavage fluid (BALF) and histopathological changes of the lung tissues were examined. The expressions of epithelial sodium channel α subunit (α-ENaC) was detected with Western blotting and liver kinase B1 (LKB1) was detected with immunohistochemistry.</p><p><b>RESULTS</b>Compared with wild-type mice treated with LPS, IL-17 knockout mice showed significantly decreased W/D of the lungs (9.739∓3.3 vs 5.351∓0.56) and IL-8 level in the BALF (67.50∓7.33 vs 41.00∓3.16 pg/mL) following LPS challenge. Pathological examination revealed reduced alveolar edema fluid aggregations and lower lung injury score in IL-17 knockout mice with also higher expression levels of ENaC and LKB1 compared with the wild-type mice.</p><p><b>CONCLUSION</b>Knocking out IL-17 in mice not only alleviates inflammation of the lung tissue following ALI but also reduces the loss of ENaC protein and promotes alveolar fluid clearance, mechanism of which is probably associated with LKB1.</p>


Subject(s)
Animals , Mice , Acute Lung Injury , Metabolism , Bronchoalveolar Lavage Fluid , Chemistry , Epithelial Sodium Channels , Metabolism , Gene Knockout Techniques , Interleukin-17 , Genetics , Metabolism , Interleukin-8 , Metabolism , Lipopolysaccharides , Lung , Pathology , Protein Serine-Threonine Kinases , Metabolism
9.
Journal of Southern Medical University ; (12): 1148-1152, 2016.
Article in Chinese | WPRIM | ID: wpr-286831

ABSTRACT

<p><b>OBJECTIVE</b>To explore the role of epithelial sodium channel (ENaC) in regulating the functional activity of osteoclasts.</p><p><b>METHODS</b>Multinucleated osteoclasts were obtained by inducing the differentiation of rat bone marrow cells with macrophage colony-stimulating factor (M-CSF) and RANKL. The osteoclasts were exposed to different concentrations of the ENaC inhibitor amiloride, and the expression of ENaC on osteoclasts was examined using immunofluorescence technique. The osteoclasts were identified with tartrate-resistant acid phosphatase (TRAP) staining, and the positive cells were incubated with fresh bovine femoral bone slices and the number of bone absorption pits was counted by computer-aided image processing. RT-PCR was performed to analyze the expression of cathepsin K in the osteoclasts.</p><p><b>RESULTS</b>s Exposure to different concentrations of amiloride significantly inhibited the expression of ENaC and reduced the number of TRAP-positive osteoclasts. Exposure of the osteoclasts to amiloride also reduced the number of bone resorption pits on bone slices and the expression of osteoclast-specific gene cathepsin K.</p><p><b>CONCLUSION</b>s ENaC may participate in the regulation of osteoclast differentiation and bone resorption, suggesting its role in functional regulation of the osteoclasts and a possibly new signaling pathway related with ENaC regulation for modulating bone metabolism.</p>


Subject(s)
Animals , Cattle , Rats , Bone Marrow Cells , Cell Biology , Bone Resorption , Cathepsin K , Metabolism , Cell Differentiation , Epithelial Sodium Channels , Metabolism , Macrophage Colony-Stimulating Factor , Metabolism , Osteoclasts , Cell Biology , RANK Ligand , Metabolism , Signal Transduction
10.
Chinese Medical Journal ; (24): 594-600, 2016.
Article in English | WPRIM | ID: wpr-328195

ABSTRACT

<p><b>OBJECTIVE</b>To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation.</p><p><b>DATA SOURCES</b>Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected.</p><p><b>STUDY SELECTION</b>Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded.</p><p><b>RESULTS</b>ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2.</p><p><b>CONCLUSION</b>The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference.</p>


Subject(s)
Humans , Calcium Channels , Physiology , Epithelial Sodium Channels , Chemistry , Physiology , Estrogens , Pharmacology , Osteogenesis , Physiology
11.
Journal of Southern Medical University ; (12): 1602-1605, 2015.
Article in Chinese | WPRIM | ID: wpr-232563

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of arginine vasopressin (AVP) on alveolar fluid clearance (AFC) in acute lung injury (ALI).</p><p><b>METHODS</b>Forty-eight healthy adult Sprague-Dawley rats were randomly divided into control group, ALI model group and AVP treatment group. The pathological changes in the lungs, lung water content, alveolar permeability and AFC were observed, and the expressions of alveolar epithelial sodium channel (ENaC) and Na⁺, K⁺-ATPase were measured.</p><p><b>RESULTS</b>Compared with those in the model group, the rats treated with AVP showed significantly decreased alveolar permeability (0.27 ± 0.15 vs 0.59 ± 0.19) and lung water content (5.01 ± 1.59 vs 8.67 ± 1.79) (P<0.05) and increased AFC (23.56 ± 4.51 vs 8.28 ± 3.57) and of α-ENaC expressions (1.296 ± 0.322 vs 0.349 ± 0.141) and α1-Na⁺, K⁺-ATPase (1.421 ± 0.389 vs 0.338 ± 0.186) (P<0.05).</p><p><b>CONCLUSION</b>AVP can promote AFC in with ALI possibly by up-regulation of α-ENaC, α1-Na⁺, and K⁺-ATPase.</p>


Subject(s)
Animals , Rats , Acute Lung Injury , Drug Therapy , Arginine Vasopressin , Pharmacology , Epithelial Sodium Channels , Metabolism , Lung , Pathology , Pulmonary Alveoli , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase , Metabolism
12.
Annals of Pediatric Endocrinology & Metabolism ; : 230-234, 2015.
Article in English | WPRIM | ID: wpr-96135

ABSTRACT

Hyponatremia and hyperkalemia in infancy can be attributed to various causes, originating from a variety of renal and genetic disorders. Pseudohypoaldosteronism type 1 (PHA1) is one of these disorders, causing mineralocorticoid resistance that results in urinary salt wasting, failure to thrive, metabolic acidosis, and dehydration. PHA1 is heterogeneous in etiology. Inactivating mutations in the NR3C2 gene (4q31.1), which encodes the mineralocorticoid receptor, causes a less severe autosomal dominant form that is restricted to the kidney, while mutations in the amiloride-sensitive epithelial sodium channel gene (alpha subunit=SCNN1A, 12p13; beta subunit=SCNN1b, 16p12.2-p12.1; gamma subunit=SCNN1G, 16p12) causes a more severe autosomal recessive form, which has systemic effects. Here we report a neonatal case of kidney restricted PHA1 (renal type of PHA1) who first showed laboratory abnormalities before obvious PHA1 manifestations, with two functional polymorphisms in the NR3C2 gene. This is the second genetically confirmed case in Korea and the first to show functional polymorphisms that have previously been reported in the literature.


Subject(s)
Humans , Infant, Newborn , Male , Acidosis , Dehydration , Epithelial Sodium Channels , Failure to Thrive , Hyperkalemia , Hyponatremia , Kidney , Korea , Pseudohypoaldosteronism , Receptors, Mineralocorticoid
13.
Electrolytes & Blood Pressure ; : 7-16, 2015.
Article in English | WPRIM | ID: wpr-16303

ABSTRACT

Hypertension is a complex trait determined by both genetic and environmental factors and is a major public health problem due to its high prevalence and concomitant increase in the risk for cardiovascular disease. With the recent large increase of dietary salt intake in most developed countries, the prevalence of hypertension increases tremendously which is about 30% of the world population. There is substantial evidence that suggests some people can effectively excrete high dietary salt intake without an increase in arterial BP, and another people cannot excrete effectively without an increase in arterial BP. Salt sensitivity of BP refers to the BP responses for changes in dietary salt intake to produce meaningful BP increases or decreases. The underlying mechanisms that promote salt sensitivity are complex and range from genetic to environmental influences. The phenotype of salt sensitivity is therefore heterogeneous with multiple mechanisms that potentially link high salt intake to increases in blood pressure. Moreover, excess salt intake has functional and pathological effects on the vasculature that are independent of blood pressure. Epidemiologic data demonstrate the role of high dietary salt intake in mediating cardiovascular and renal morbidity and mortality. Almost five decades ago, Guyton and Coleman proposed that whenever arterial pressure is elevated, pressure natriuresis enhances the excretion of sodium and water until blood volume is reduced sufficiently to return arterial pressure to control values. According to this hypothesis, hypertension can develop only when something impairs the excretory ability of sodium in the kidney. However, recent studies suggest that nonosmotic salt accumulation in the skin interstitium and the endothelial dysfunction which might be caused by the deterioration of vascular endothelial glycocalyx layer (EGL) and the epithelial sodium channel on the endothelial luminal surface (EnNaC) also play an important role in nonosmotic storage of salt. These new concepts emphasize that sodium homeostasis and salt sensitivity seem to be related not only to the kidney malfunction but also to the endothelial dysfunction. Further investigations will be needed to assess the extent to which changes in the sodium buffering capacity of the skin interstitium and develop the treatment strategy for modulating the endothelial dysfunction.


Subject(s)
Arterial Pressure , Blood Pressure , Blood Volume , Cardiovascular Diseases , Developed Countries , Epithelial Sodium Channels , Glycocalyx , Homeostasis , Hypertension , Kidney , Mortality , Natriuresis , Negotiating , Phenobarbital , Phenotype , Prevalence , Public Health , Skin , Sodium , Water
14.
Medicina (B.Aires) ; 74(2): 133-139, abr. 2014. ilus, graf
Article in Spanish | LILACS | ID: lil-708596

ABSTRACT

La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR), un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC). Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.


Cystic fibrosis is caused by dysfunction or lack of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that has a key role in maintaining ion and water homoeostasis in different tissues. CFTR is a cyclic AMP-activated Cl- channel found in the apical and basal plasma membrane of airway, intestinal, and exocrine epithelial cells. One of CFTR’s primary roles in the lungs is to maintain homoeostasis of the airway surface liquid layer through its function as a chloride channel and its regulation of the epithelial sodium channel ENaC. More than 1900 CFTR mutations have been identified in the cftr gene. The disease is characterized by viscous secretions of the exocrine glands in multiple organs and elevated levels of sweat sodium chloride. In cystic fibrosis, salt and fluid absorption is prevented by the loss of CFTR and ENaC is not appropriately regulated, resulting in increased fluid and sodium resorption from the airways and formation of a contracted viscous surface liquid layer. In the sweat glands both Na+ and Cl- ions are retained in the lumen, causing significant loss of electrolytes during sweating. Thus, elevated sweat NaCl concentration is the basis of the classic pilocarpine-induced sweat test as a diagnostic feature of the disease. Here we discuss the ion movement of Cl- and Na+ ions in two tissues, sweat glands and in the air surface as well as the role of ENaC in the pathogenesis of cystic fibrosis.


Subject(s)
Humans , Biological Transport/physiology , Cell Membrane Permeability/physiology , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/physiopathology , Epithelial Sodium Channels/physiology
15.
Journal of Southern Medical University ; (12): 1282-1285, 2014.
Article in Chinese | WPRIM | ID: wpr-312588

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the protective effect of rutin against acute lung injury induced by lipopolysaccharide (LPS).</p><p><b>METHODS</b>Thirty C57BL/6 mice were randomly divided into control group, LPS-induced acute lung injury model group and treatment (LPS+Rutin) group. The pathological changes of the lung tissue were observed microscopically on paraffin sections with HE staining, and the lung wet/dry weight ratio was measured. The levels of TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF) were measured with ELISA, and the expressions of α-ENaC were detected with RT-PCR and Western blotting.</p><p><b>RESULTS</b>Pathological examination of the lung tissue revealed distinct inflammation, congestion and edema in the model group. The mice in the treatment group showed significantly milder lung injuries than those in the model group. Compared with the control group, the model group showed significantly increased lung wet/dry ratio and contents of TNF-α and IL-1β in BALF but lowered expressions of α-ENaC mRNA and protein. Compared with the model group, rutin treatment significantly decreased the lung wet/dry ratio and TNF-α and IL-1β levels in the BALF and increased the expressions of α-ENaC mRNA and protein.</p><p><b>CONCLUSION</b>Rutin can inhibit the pulmonary inflammation and increase the expression of alveolar epithelial sodium channel protein to alleviate LPS-induced acute lung injury in mice.</p>


Subject(s)
Animals , Mice , Acute Lung Injury , Drug Therapy , Bronchoalveolar Lavage Fluid , Epithelial Sodium Channels , Metabolism , Interleukin-1beta , Metabolism , Lipopolysaccharides , Lung , Pathology , Mice, Inbred C57BL , RNA, Messenger , Rutin , Pharmacology , Tumor Necrosis Factor-alpha , Metabolism
16.
Journal of Genetic Medicine ; : 81-87, 2013.
Article in English | WPRIM | ID: wpr-196059

ABSTRACT

Pseudohypoaldosteronism (PHA), a rare syndrome of systemic or renal mineralocorticoid resistance, is clinically characterized by hyperkalemia, metabolic acidosis, and elevated plasma aldosterone levels with either renal salt wasting or hypertension. PHA is a heterogeneous disorder both clinically and genetically and can be divided into three subgroups; PHA type 1 (PHA1), type 2 (PHA2) and type 3 (PHA3). PHA1 and PHA2 are genetic disorders, and PHA3 is a secondary disease of transient mineralocorticoid resistance mostly associated with urinary tract infections and obstructive uropathies. PHA1 includes two different forms with different severity of the disease and phenotype: a systemic type of disease with autosomal recessive inheritance (caused by mutations of the amiloride-sensitive epithelial sodium channel, ENaC) and a renal form with autosomal dominant inheritance (caused by mutations of the mineralocorticoid receptor, MR). In the kidneys, the distal nephron takes charge of the fine regulation of water absorption and ion handling under the control of aldosterone. Two major intracellular actors necessary for the action of aldosterone are the MR and the ENaC. Impairment of the intracellular aldosterone signal transduction pathway results in resistance to the action of mineralocorticoids, which leads to PHA. Herein, ion handling the distal nephron and the clinico-genetic findings of PHA are reviewed with special emphasis on PHA type 1.


Subject(s)
Absorption , Acidosis , Aldosterone , Epithelial Sodium Channels , Hyperkalemia , Hypertension , Kidney , Mineralocorticoids , Nephrons , Phenotype , Plasma , Pseudohypoaldosteronism , Receptors, Mineralocorticoid , Signal Transduction , Urinary Tract Infections , Water , Wills
17.
Journal of the Korean Society of Pediatric Nephrology ; : 137-142, 2013.
Article in Korean | WPRIM | ID: wpr-138367

ABSTRACT

Pseudohypoaldosteronism (PHA) is a condition characterized by renal salt wasting, hyperkalemia, and metabolic acidosis due to renal tubular resistance to aldosterone. Systemic PHA1 is a more severe condition caused by defective transepithelial sodium transport due to mutations in the genes encoding the alpha (SCNN1A), beta (SCNN1B), or gamma (SCNN1G) subunits of the epithelial sodium channel at the collecting duct, and involves the sweat glands, salivary glands, colon, and lung. Although systemic PHA1 is a rare disease, we believe that genetic studies should be performed in patients with normal renal function but with high plasma renin and aldosterone levels, without a history of potassium-sparing diuretic use or obstructive uropathy. In the present report, we describe a case of autosomal recessive PHA1 that was genetically diagnosed in a newborn after severe hyperkalemia was noted.


Subject(s)
Humans , Infant, Newborn , Acidosis , Aldosterone , Colon , Epithelial Sodium Channels , Hyperkalemia , Hyponatremia , Lung , Plasma , Pseudohypoaldosteronism , Rare Diseases , Renin , Salivary Glands , Sodium , Sweat Glands
18.
Journal of the Korean Society of Pediatric Nephrology ; : 137-142, 2013.
Article in Korean | WPRIM | ID: wpr-138366

ABSTRACT

Pseudohypoaldosteronism (PHA) is a condition characterized by renal salt wasting, hyperkalemia, and metabolic acidosis due to renal tubular resistance to aldosterone. Systemic PHA1 is a more severe condition caused by defective transepithelial sodium transport due to mutations in the genes encoding the alpha (SCNN1A), beta (SCNN1B), or gamma (SCNN1G) subunits of the epithelial sodium channel at the collecting duct, and involves the sweat glands, salivary glands, colon, and lung. Although systemic PHA1 is a rare disease, we believe that genetic studies should be performed in patients with normal renal function but with high plasma renin and aldosterone levels, without a history of potassium-sparing diuretic use or obstructive uropathy. In the present report, we describe a case of autosomal recessive PHA1 that was genetically diagnosed in a newborn after severe hyperkalemia was noted.


Subject(s)
Humans , Infant, Newborn , Acidosis , Aldosterone , Colon , Epithelial Sodium Channels , Hyperkalemia , Hyponatremia , Lung , Plasma , Pseudohypoaldosteronism , Rare Diseases , Renin , Salivary Glands , Sodium , Sweat Glands
19.
The Korean Journal of Physiology and Pharmacology ; : 57-64, 2013.
Article in English | WPRIM | ID: wpr-727488

ABSTRACT

Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model. Using perfusing solution saturated with 95% N2 and 5% CO2, induction of cell hypoxia was confirmed based on increased intracellular Ca2+ with diminished oxygen content in the perfusate. During acute hypoxia, one channel type with a conductance of about 30 pS (2.5 pA at -80 mV) was activated within the first 2~3 min following onset of hypoxia and was long-lived for more than 300 ms with high open probability (Po, up to 0.8). This channel was permeable to Na+ ions, but not to K+, Ca+, and Cl- ions, and was sensitively blocked by amiloride (200 nM). These characteristics and behaviors were quite similar to those of epithelial sodium channel (ENaC). RT-PCR and Western blot analyses confirmed that ENaC channel was endogenously expressed in PC12 cells. Taken together, a 30-pS ENaC-like channel was activated in response to acute hypoxia in PC12 cells. This is the first evidence of an acute hypoxia-activated Na+ channel that can contribute to depolarization of the cell.


Subject(s)
Animals , Rats , Amiloride , Hypoxia , Blotting, Western , Cell Hypoxia , Epithelial Sodium Channels , Ion Channels , Ions , Neurons , Oxygen , PC12 Cells , Pheochromocytoma
20.
Medicina (B.Aires) ; 72(2): 171-175, abr. 2012. ilus
Article in Spanish | LILACS | ID: lil-639671

ABSTRACT

Desde hace más de cuarenta años que el litio es usado para el tratamiento de la enfermedad bipolar; recientes estudios sugieren también su utilidad en el trastorno cognitivo mínimo tipo amnésico. El litio es filtrado en el glomérulo y un 65-75% del mismo es reabsorbido en el túbulo contorneado proximal y en el asa ascendente de Henle por el transportador Na+, K+, 2Cl- y vía paracelular. Una pequeña fracción del litio entra en las células principales del túbulo colector por medio del canal epitelial de sodio sensible al amiloride (ENaC) localizado en la membrana apical de la célula. Luego de 10- 20 años de tratamiento con litio los enfermos pueden desarrollar poliuria, acidosis tubular e insuficiencia renal crónica que puede terminar en una forma de diabetes que no responde a la arginina vasopresina llamada diabetes insípida nefrogénica. Se cree que estas fallas renales son consecuencias de una reducción en el número de moléculas de acuaporina 2 en la membrana apical. Las causas para esto son complejas. El litio es un poderoso inhibidor de la isoforma beta de la enzima glicógeno sintetasa quinasa y esto está asociado a una menor actividad de la adenilato ciclasa que lleva a una disminución en la concentración intracelular de cAMP. Esto finalmente interferiría con la síntesis de nuevas moléculas de acuaporina 2 y con el tráfico de ellas desde la zona subapical de la célula hacia la membrana celular, causando la disminución en la reabsorción de agua en la parte distal del nefrón.


For more than 40 years lithium has been used to treat bipolar disorder and recent trials suggest a potential efficacy also in the treatment of the amnestic mild cognitive impairment. Lithium is filtered by the glomerulus and 65% - 75% of the filtered amount is reabsorbed along the proximal tubule and in the thick ascending limb of Henle's loop by the Na+, K+, 2Cl- transporter and via paracellular. A small fraction of lithium is reabsorbed in the collecting duct's principal cells through the epithelial Na channel (ENaC) located on the apical side of the cells. Polyuria, renal tubular acidosis and chronic renal failure are the most frequent adverse effects of lithium after 10-20 years of treatment and these alterations can reach to a vasopressin nonresponding form of diabetes insipidus entity called nephrogenic diabetes insipidus. It is believed that the molecular mechanisms of these renal changes are related to a reduction in the number of aquaporin-2 inserted in the apical membrane of the cells. The causes of this are complex. Lithium is a powerful inhibitor of the enzyme glycogen synthase kinase 3β and this is associated with a lower activity of adenylate cyclase with a reduction in the cAMP levels inside of the cells. The latter may interfere with the synthesis of aquaporin-2 and also with the traffic of these molecules from the subapical site to membrane promoting the impairment of water reabsorption in the distal part of the kidney.


Subject(s)
Animals , Antimanic Agents/therapeutic use , /physiology , Epithelial Sodium Channels/physiology , Lithium Compounds/therapeutic use , Antimanic Agents/adverse effects , Antimanic Agents/metabolism , Bipolar Disorder/drug therapy , Diabetes Insipidus, Nephrogenic/chemically induced , Kidney Diseases/physiopathology , Kidney/drug effects , Kidney/metabolism , Lithium Compounds/adverse effects , Lithium Compounds/metabolism , Lithium/adverse effects , Lithium/metabolism , Lithium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL